
The LHC Collimation System

circumference: 26.7 km

The LHC Collimation System – Contents

Introduction

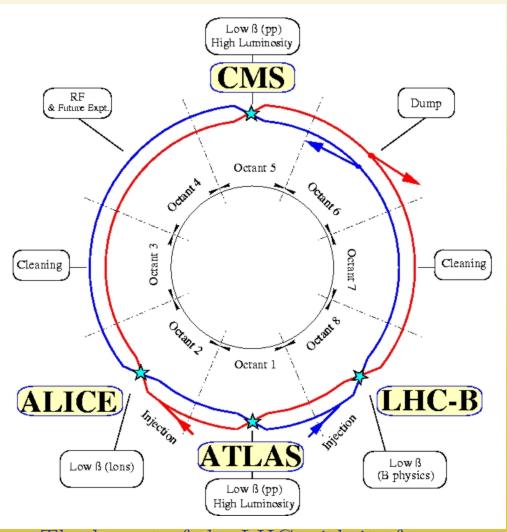
- LHC and its parameters
- Beam Loss

Collimation

- Two-stage collimation in the LHC
- Optics of a two-stage collimation system

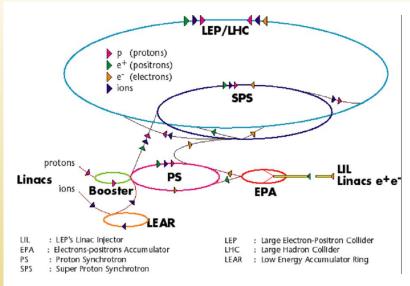
Specifications for the LHC collimators

- Collimators and Machine Protection
- Requirements of the Collimators


The Large Hadron Collider at CERN

p-p collisions

- center of mass energy: 14 TeV
- luminosity: 10^{34} cm⁻²s⁻¹

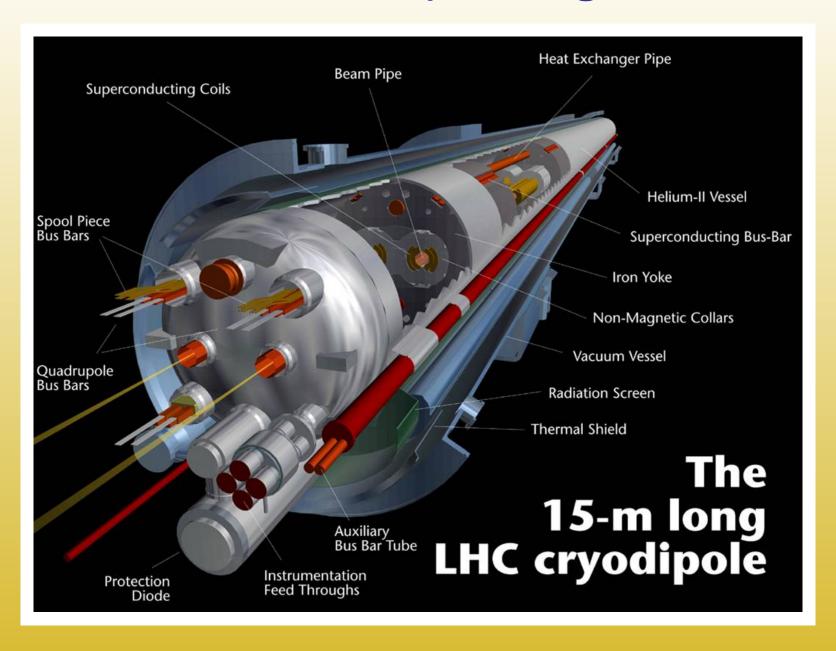

heavy ion collisions (Pb-Pb)

- center of mass energy: 1150 TeV
- luminosity: $10^{27} \text{cm}^{-2} \text{s}^{-1}$

The layout of the LHC with its four experiments

p-p Collision Mode

momentum	7 TeV/c
number of bunches	2835
particles per bunch	10^{11}
bunch spacing	25 ns
frequency	11 kHz
energy stored per beam	∼ 350 MJ


The injector chain

Magnetic guide field for 7 TeV protons: **8.3 T**

⇒ superconducting magnets cooled in superfluid He (1.9 K)

The 15 m long dipole magnets provide bending of $\phi = 5.1$ mrad $\frac{2\pi}{5.1\cdot10^{-3}} \rightarrow 1232$ main dipole magnets

Two-in-one Dipole Magnets

Parameters pushed to the extreme \Rightarrow new scale of complexity

Demanding Issue: **Safe Operation of LHC**

Energy loss per turn/proton/7 TeV	6.7	keV
Radiated power per beam/7 TeV	3.8	kW
Stored energy per beam/7 TeV	350	MJ
Stored energy in magnets/7 TeV	11	GJ

- Proton energy a factor 7 above other machines
- energy stored in the beams more than a factor 100 higher
 - ▶ **Machine Protection System** is a vital part of the machine
- beam must be handled in superconducting area
- sudden loss of $\sim 10^6$ protons at 7 TeV: **quenches**
- Quenches, powering failures, ... could cause the beam to be lost.
- ▶ The energy stored in the beams is sufficient to heat 500 kg copper from 1.9 K to the melting point.

Collimators are a machine protection tool.

Beam Losses in the LHC

Continuous beam loss

- under normal conditions due to
 - imperfections of the machine
 - nuclear interactions, beam-gas collisions

Irregular beam loss

- failures of equipment
- operation errors

Continuous Beam Loss

Halo particles are lost at aperture restrictions.

Processes for creation and regeneration of the halo:

- p-p collisions at the IP
 - elastic, inelastic, single diffractive

• beam-gas

• Rutherford scattering

• multiple Coulomb scattering

elastic nuclear scattering

• inelastic nuclear scattering

• intra-beam scattering

Touschek effect

• Resonance crossing

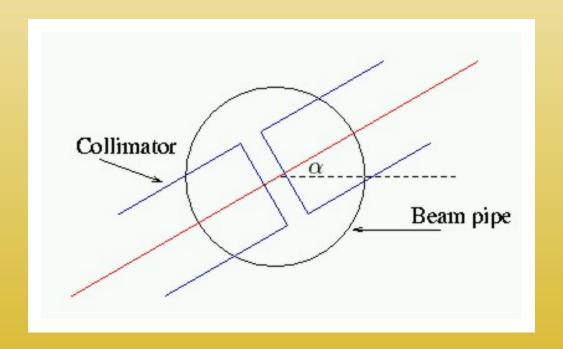
• beam-beam effect, space charge

Lo	ss rate	
	Injection	Collision
	[p/s]	[p/s]
Beam-gas		
Nuclear elastic	$7.64 \cdot 10^7$	$1.74 \cdot 10^6$
Nuclear inelastic	2.08	10^{8}
Multiple Coulomb	$1.43 \cdot 10^8$	$3.30 \cdot 10^6$
Intra-beam scattering	ng	
Transverse	$3.71 \cdot 10^7$	$7.18 \cdot 10^6$
Longitudinal	$4.85 \cdot 10^8$	$1.30 \cdot 10^8$
Touschek	$6.03 \cdot 10^6$	$5.03 \cdot 10^6$
Resonance crossing		
Beam-beam		$3.76 \cdot 10^9$
Total	$9.55 \cdot 10^8$	$4.11 \cdot 10^9$

Estimation for LHC: Total loss outside of insertions:

$$\dot{N}_{\rm p,inj} \sim 7.4 \cdot 10^8 \, {\rm p/s}$$
 $\dot{N}_{\rm p,coll} \sim 3.91 \cdot 10^9 \, {\rm p/s}$

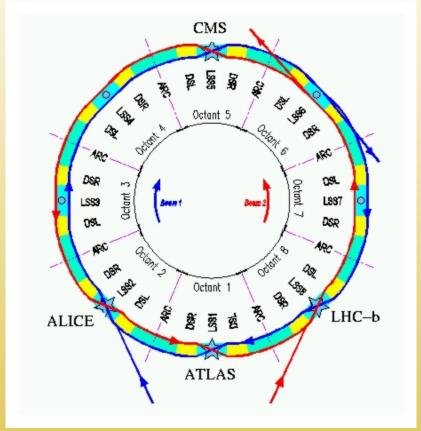
Quench level at top energy: $\dot{N}_q = 7.6 \cdot 10^6 \, \mathrm{p/m/s}$


LHC needs collimation throughout the whole cycle of operation

in order to:

- ▶ minimize background in the experiments
- ▶ limit irradiation of equipment close to the beam
- avoid quenching magnets

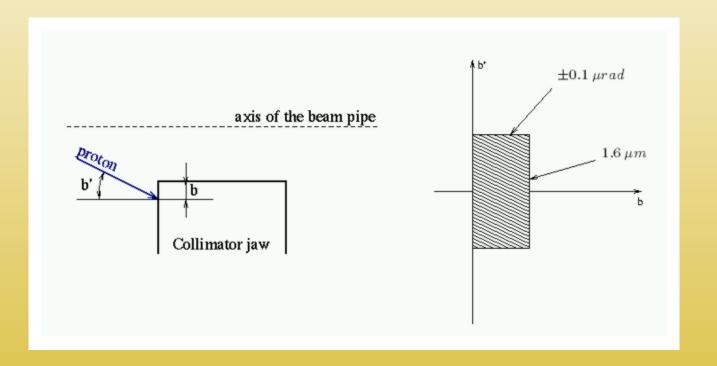
LHC collimators:


- blocks of materials
- 2 radially movable jaws
- installed on opposite sides of the beam

Two insertions for beam cleaning

Momentum cleaning and betatron cleaning installed in different insertions.

- betatron cleaning: **IR7**
- momentum cleaning: IR3, large $D_x/\sqrt{\beta_x}$


A fraction of 10^{-7} - 10^{-9} of beam sufficient to quench \Rightarrow strict requirements on collimators:

- ullet define aperture limit in the ring: amplitudes under 10σ
- continuous loss to be suppressed better than 99.9%

Two-stage Collimation System

small impact parameters at collimators

- ▶ 50%-probability for out-scattered protons
- ▶ additional collimators downstream to capture out-scattered protons

⇒ **Primary** and **secondary** collimators

Optics of a two-stage collimation system

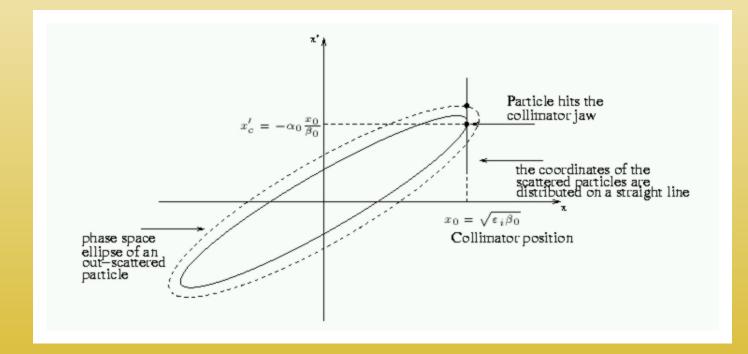
If D(s) has its peak at the primary collimator

- > same considerations for momentum and betaron cleaning
- \triangleright momentum cleaning reduced to betatron cleaning (in one plane) if $\frac{1}{D}\frac{dD}{ds} = -\frac{\alpha}{\beta}$

Betatron Cleaning

- relative aperture between primary (n_0) and secondary collimator (n_1)
 - normalized aperture $n_1 > n_0$
 - difference n_0 - n_1
 - amplitude smearing: estimation: 0.5σ
 - orbit changes during operation: estimation: 0.5σ

$$\Rightarrow \Delta n = n_1 - n_0 = 1$$


- LHC: $n_0 = 6$, $n_1 = 7$
- relative longitudinal position (phase advance)

Optimum Phase Advance for Secondary Collimation

assuming horizontal collimation

- impact parameters are small $\Rightarrow x_0 = \sqrt{\varepsilon_i \beta_0(s)}, x_0' = -\frac{\alpha_0}{\beta_0} x_0, \varepsilon_i = \frac{x_0^2}{\beta_0}$
- Scattering in the collimator jaw: proton might be scattered into the vertical plane. **Plane** and **orthogonal** scattering.

Plane Scattering

Plane Scattering

- scattering angle Θ is added to initial angle \mathbf{x}_0'
- increase of ε_i :

$$\varepsilon_i^* = \varepsilon_i + \beta_0 \cdot \Theta^2$$

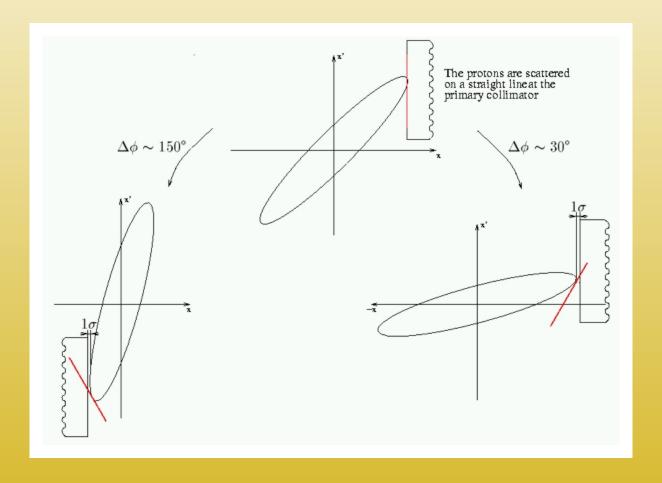
• betatron phase jump $\delta \phi$:

$$\delta \phi = \pm \arccos \sqrt{\frac{\varepsilon_i}{\varepsilon_i^*}} = \pm \arcsin \sqrt{\frac{\varepsilon_i^* - \varepsilon_i}{\varepsilon_i^*}}$$

• ansatz for horizontal displacement at secondary collimator:

$$\pm x_1 = \sqrt{\varepsilon_i^* \beta_1} \cos(\delta \phi + \Delta \phi)$$

• \Rightarrow equation relating Θ and $\Delta \phi$:


$$\Theta = \frac{\frac{x_0}{\sqrt{\beta_0}}\cos\Delta\phi \mp \frac{x_1}{\sqrt{\beta_1}}}{\sqrt{\beta_0}\sin\Delta\phi}$$

• minimum for Θ for phase advances:

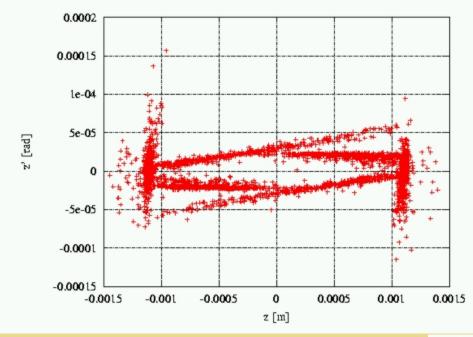
$$\Delta \phi = m \cdot \pi \pm \arccos\left(\frac{n_0}{n_1}\right)$$

• LHC: $n_0 = 6$ and $n_1 = 7$:

$$\Delta \phi \sim m \cdot 180^{\circ} \pm \sim 30^{\circ}$$

Orthogonal + Plane Scattering

- 2D-ansatz for derivation of optimum phase advance
- number of secondary collimators per primary collimator: 4
- result contains
 - optimum phase advance
 - tilt angle of the jaw of secondary collimator

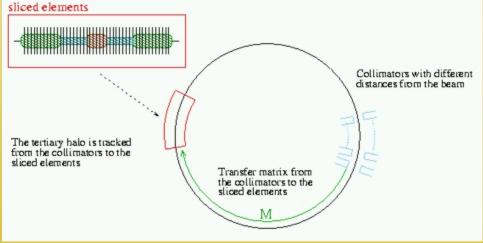

LHC:

- IR7: 4 primary collimators, 16 secondary collimators
- IR3: 1 primary collimator, 6 secondary collimators

Proposal so far for the materials and length of the collimators:

- primary: aluminum, 20 cm
- secondary: copper, 50 cm

Tertiary Halo



Vertical tertiary halo.

- Distribution highly nonuniform
- MC Picker provided for beam instrumentation and experiments
- Slicetrack

Slicetrack

• Calculates longitudinal loss maps along LHC elements.

Collimators & Absorbers at 7 TeV

Region	Туре	Orientation	Material	Number	Length	Setting
IR1	TCL(Q5)	X	Cu	2	1 m	10σ
	TAS	Round	Cu?	2	1.8 m	12σ
	TCL (D2)	X	Cu	2	1 m	10σ
IR3	TCP	X	Al	1	0.2 m	8σ
	TCS	X,Y,XY	Cu	6	0.5 m	9.3σ
IR5	TCL(Q5)	X	Cu	2	1 m	10σ
	TAS	Round	Cu?	2	1.8 m	12σ
	TCL (D2)	X	Cu	2	1 m	10σ
IR6	TCDQ	X (1side)	С	1	9.5m	10σ
IR7	TCP	X	Al	1	0.2 m	6σ
	TCS	X,Y,XY	Cu	6	0.5 m	7σ

Settings for nominal luminosity and nominal β^* .

BUT ...

Beam	Beam	Scenario,	Operation	Dump
Lifetime	Power	Comment		
	Deposit			
	per Beam			
100 h	1 kW	good condition	YES	no
10 h	10 kW	collimation system	yes	no
		is necessary		
1 h	100 kW	with efficient collimators	short time	not urgent
1 min	6 MW	equipment or	no	yes
		operation failure		
1 s		equipment failure	NO	fast
15 turns		failure of D1 magnet	NO	very fast
$\sim 1.3 \text{ ms}$				
1 turn		failure at injection,	NO	no more
$\sim 0.1 \text{ ms}$		failure of beam dump		possible
		kicker or injection kicker;		
		protection only by		
		collimators		

Requirements on Minimum Beam Lifetime

Normal Operation

Mode	Energy	Duration	required	Beam	Power
			min.	deposition	deposition
			lifetime		
	[TeV]	[s]	[h]	[protons/s]	[kW]
Injection	0.45	cont	1.0	$0.8 \cdot 10^{11}$	6
		10	0.1	$8.2 \cdot 10^{11}$	60
Ramp	0.45-7	10	0.1-0.2	$8.2 - 4.1 \cdot 10^{11}$	60-465
	0.45	~ 1	0.006	$1.3 \cdot 10^{13}$	1000
Top energy	7	cont	1	$0.8 \cdot 10^{11}$	93
		10	0.2	$4.1 \cdot 10^{11}$	465

Irregular Beam Loss

- BLMs near collimators trigger beam dump
- 2-3 turns necessary to dump the beam

Requirements on Minimum Beam Lifetime

Critical One-turn Failures

Failure	Beam	Intensity	Energy	Transverse	Impact
mode	energy	deposit	deposit	dimensions	duration
	[TeV]	[protons]	[kJ]	$[mm \times mm]$	[ns]
Injection					
oscillation	0.45	$2.6 \cdot 10^{13}$	1875	1.0×1.0	6250
Asynchronous					
beam dump	0.45	$1.1 \cdot 10^{12}$	78	5.0 ×1.0	275
(all modules)	7	$2.8 \cdot 10^{11}$	311	1.0 ×0.2	75
Asynchronous					
beam dump	0.45	$1.1 \cdot 10^{12}$	78	5.0 ×1.0	275
(1 out of 15 modules)	7	$6 \cdot 10^{11}$	667	1.0 ×0.2	150

Do the so far chosen materials meet the requirements??

Summary of Requirements for LHC collimators

- Survival of jaws with 7 TeV proton impact (no melting, cracks, dust formation,...)
 - $2 \cdot 10^{12}$ p (2.2 MJ) in 0.5 μ s over area of 1 mm(full width)x 0.2 mm(rms)
 - $4 \cdot 10^{12}$ p (4.5 MJ) in 10 s over area of 0.03 mm(rms)x0.2 mm(rms)
- Excellent cleaning inefficiency
 - Local losses $\sim 10^{-5}$ of primary beam halo
 - Deformations of ~ 1.0 m long jaws $< 25 \ \mu \text{m}$
 - Control/maintain beam-jaw position/angle ~ 0.1 mm, $\sim 60~\mu \text{rad}$

AND: Collimation must be available from day 1 of LHC operation

Material Damage with LHC Beams

Destruction Limits

	Destruction	on Limit
	[nominal i	ntensity]
	450 GeV	7 TeV
Copper	1.9e-3	1.8e-5
Beamscreen	1.6e-3	7.0e-5
S.C. coil	4.2e-3	14.0e-5

This made the reconsideration of the present collimator material necessary.

Two possibilities:

- Solution with efficient robustness that frequent damage is avoided (low Z material)
- Regular damage of the jaws. Diagnostics + remote repair/exchange possibilities of the highly radioactive jaws.

We are now investigating low Z materials. Carbon??

Carbon as Material for Secondary Collimators?

- Low Z jaws are less activated
- Remote handling requirements are more relaxed.
- But: secondary collimators would have to be longer to restore cleaning efficiency of the old system $(0.5 \text{ m} \rightarrow 1 \text{ m})$
- Space in the insertion is available and optics can be re-matched
- Vacuum group does not rule out carbon.
- Main problem at 7 TeV: C system increases impedance tenfold
- Open question: e-cloud
- Other solutions:
 - Low Z system based on Beryllium
 - Tertiary collimators at triplets
 - Short high Z jaws with easy diagnostics and repair/exchange

Schedule

Sep 2001	LHC Beam Cleaning Study Group
Jan 2002	Consensus to consider low Z-material
Jun 2002	Consensus on detailed requirements
Oct 2002	Project LHC Collimation new group First tolerances
Jan 2003	Full simulation chain: Beam – FLUKA – ANSYS Cleaning efficiency and optics with low Z Review of Impedance, other constraints
Jan 2003 April 2004	Cleaning efficiency and optics with low Z
	Cleaning efficiency and optics with low Z Review of Impedance, other constraints